STATA PROGRAMMING REFERENCE
MANUAL

RELEASE 14

‘gr N
I 2

A Stata Press Publication
StataCorp LP
College Station, Texas

E\?’\ ® Copyright (¢) 1985-2015 StataCorp LP
:’J"’"\(N[Al rights reserved
A Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-162-5
ISBN-13: 978-1-59718-162-4

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATA and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14. Statistical Software. College Station, TX: StataCorp LP.

Contents

INTO .« ottt e e e Introduction to programming manual
AUEOMALION . o ettt ettt e ettt e e e e e e e e e e Automation
break Suppress Break key
byable Make programs byable
CAPLUTE . et sttt e et e e e e e e e e e e e Capture return code
AT o Characteristics
ClaSS ot Class programming
class exit ... Exit class-member program and return result
classutil e Class programming utility
Le0) 10100 1C) £ Add comments to programs
CONfITIN .ottt e e e e e Argument verification
Te0) 118131 Break out of loops
CTELUITL « . vttt ettt et e e e e e e e e e e e e e e e e Return c-class values
—datasignature i Determine whether data have changed
#AeliMit ..o e Change delimiter
dialog programmingt e Dialog programming
discard Drop automatically loaded programs
display ... Display strings and values of scalar expressions
EIELUITL .. vttt ettt et e e e e e Post the estimation results
CITOT « vttt et e e et et e e e Display generic error message and exit
estat programming Controlling estat after user-written commands
ESHMALES .+ o vt ettt e Manage estimation results
BXIl vttt e Exit from a program or do-file
file o Read and write text and binary files
file formats .dta e Description of .dta file format
findfile Find file in path
foreach Loop over items
forvalueso Loop over consecutive values
fvexpand ... Expand factor varlists
GELOKEI . ot e Low-level parsing
P if programming command
nclude e Include commands from file
JAV o e Java plugins
javacall ... Call a static Java method
levelsof ... Levels of variable
TNACTO & et ettt et ettt e e e et e e e Macro definition and manipulation
MACTO LISES . oottt et e Manipulate lists
MAKECNIS .« .ottt e Constrained estimation
mark ... Mark observations for inclusion
matlist Display a matrix and control its format
MATIX . ottt e e Introduction to matrix commands

W N =

17
21
56
58
63
65
70
72

83
86
88
154
155

166
184
198
202
206

208
227
228
230
239
243

244

248
251

254
258

259

262
282
286
292
299
311

ii Contents

MATX ACCUML © o v ettt ettt et e ettt e e et Form cross-product matrices
matrix define oL Matrix definition, operators, and functions
matrix dissimilarity, Compute similarity or dissimilarity measures
matrix eigenvaluesiiiaaa... Eigenvalues of nonsymmetric matrices
MALTIX GO ottt et e e e e e Access system matrices
matrix mkmat Convert variables to matrix and vice versa
MALTX TOWNAMES . o\ v tv ettt ettt ettt e e e e e Name rows and columns
MALTIX SCOTE .+ . vttt ettt te e ettt e e e eaennen Score data from coefficient vectors
matrix svd ... Singular value decomposition
matrix symeigen Eigenvalues and eigenvectors of symmetric matrices
matrix utility ... List, rename, and drop matrices
1) P Pause until key is pressed
NOPIESEIVE OPLIOI . e\ vttt et ettt nopreserve option
NUMLISE .o Parse numeric lists
PAUSE .« ettt e e e e e e Program debugging command
PIUgIN e Load a plugin
postile Post results in Stata dataset
_predict Obtain predictions, residuals, etc., after estimation programming command
PIESEIVE et ettt e et e e e e e e e e Preserve and restore data
PIOZIAM ettt e e e e e e e e e Define and manipulate programs
Program Propertieseeeenenennenanann Properties of user-defined programs
Project Managero.iinii e Organize Stata files
putexcel ... e Export results to an Excel file
quietly ... Quietly and noisily perform Stata command
B 0 PP Preserve stored results
TELUITL + v vttt et et e e e e e e e e e e e e e e Return stored results
—rmeoll L Remove collinear variables
TINSE oottt et e e e e e e e e e e e Return messages
TODUSE et e Robust variance estimates
SCAlAT L Scalar variables
SEISEL vttt it e Create and manipulate sersets
set locale_functionscouiiuiinan... Specify default locale for functions
set locale_ui Specify a localization package for the user interface
signestimationsample Determine whether the estimation sample has changed
Sl ot Pause for a specified time
SICl L Stata Markup and Control Language
SOTEPIESEIVE .ot vt ittt e ettt ittt Sort within programs
SYIEAX « o e et e et et e e e e e e e e e e e e Parse Stata syntax
SYSAIT Lot Query and set system directories
tADAISD . e Display tables
timerooven.... Time sections of code by recording and reporting time spent
tOKENIZE ..ot Divide strings into tokens
10 21 Debug Stata programs
UNAD .« ottt e Unabbreviate variable list
unabemd ... Unabbreviate command name
VarabbIeVv Control variable abbreviation

VETSIOM o vt v ettt e e et e et e e e e e e Version control

315
324
341
346
349
352
358
363
366
369
372
375

376
3717

380
383
384
388
390
393
398
403
409

422

426
429
439
443
444

468
475
484
485
486
489
490
514
518
534

539
550
552
554

560
563

564
565

Contents iii

VIBWSOUICE ¢ v vttt et et et e e e e e e e e e e et e e e e View source code 569
While e Looping 570
window programmingoeeuenenaenn.. Programming menus and windows 573
window fopen Display open/save dialog box 574
WINAOW MANAZE ..ottt et Manage window characteristics 576
WINAOW MENU .ottt e e e e et e e Create menus 582
window push Copy command into Review window 590
WINAOW StOPDOX .ottt et e Display message box 591

Subject and author INdeX it 593

Combined subject table of contents

This is the complete contents for this manual. References to inserts from other Stata manuals that we
feel would be of interest to programmers are also included.

Data manipulation and management

Functions and expressions Dates and times
Strings
Utilities
Basic utilities Internet
Error messages Data types and memory
Stored results Advanced utilities

Matrix commands

Basics Other

Programming Mata
Programming

Basics Projects

Program control Advanced programming commands

Parsing and program arguments Special-interest programming commands

Console output File formats

Commonly used programming commands Mata

Debugging
Interface features

Data manipulation and management
Functions and expressions
(U] Section 12.4.2.1 Unicode string functions
(U] Chapter 13 Functions and expressions
[FN] Date and time functionsttt e
[FN] Mathematical functionsiiiininiinin i
[FN] Matrix functionsttt e
[FN] Programming functionsttt e
[FN] Random-number functions it
[FN] Selecting time-span funCtionSc.iuntnintuntn et
[FN] Statistical fUNCtiONSt e
[FN] String funCtionsottt e
[FN] Trigonometric functionsttt e
[D] o) 1 Extensions to generate
Strings

(Ul Section 12.4 ... Strings
(U] Section 12.4.2 ... Handling Unicode strings
(U] Chapter 23 Working with strings
[FN] String funCionS
(D] data types ... Quick reference for data types
[D] UNICOAE .ottt ettt e et e e e Unicode utilities

iv Combined subject table of contents

Dates and times

(U]
(Ul
(D]
(D]
(D]
(D]
(D]
(D]

Utilities

Section 12.5.3 ... i Date and time formats
Chapter 24 Working with dates and times
becal ... Business calendar file manipulation
datetimetiit i Date and time values and variables
datetime business calendars Business calendars
datetime business calendars creation Business calendars creation
datetime display formats Display formats for dates and times
datetime translation String to numeric date translation functions

Basic utilities

(Ul
(U]
(U]
[R]
(D]
[R]
[R]
(R]
[R]
(R]
(R]
[R]
(R]
(D]
[R]
(R]
(R]
[BAYES]
(R]
(D]
[R]
(D]

Chapter 4 Stata’s help and search facilities
Chapter 15 i Saving and printing output—Ilog files
Chapter 16 ... o e Do-files
about ... Display information about your Stata
DY Repeat Stata command on subsets of the data
OIS e e Clear Results window
copyright Display copyright information
dO Execute commands from a file
doedit ... Edit do-files and other text files
10 L Exit Stata
help o Display help in Stata
level ..o Set default confidence level
l0g e Echo copy of session to file
ObS i Increase the number of observations in a dataset
POSIESE .« ottt Postestimation Selector
HIOVIEW . ottt e Review previous commands
search Search Stata documentation and other resources
setclevel Set default credible level
translate Print and translate logs
unicode translate i Translate files to Unicode
1 1P View files and logs
zipfile Compress and uncompress files and directories in zip archive format

Error messages

(U]
(P]
[R]
(P]

Chapter 8 Error messages and return codes
CITOT e vttt et e e e e e eens Display generic error message and exit
EITOT MESSAZES v v v e e ee e eene e eeennn Error messages and return codes
TINSE o ettt e e e e e e e e e e e Return messages

Stored results

(U]
(Ul
(Ul
(U]
(P]
(P]
[R]
[R]

Section 13.5 Accessing coefficients and standard errors
Section 18.8 Accessing results calculated by other programs
Section 189 Accessing results calculated by estimation commands
Section 18.10 ...t e Storing results
103 (10 o Return c-class values
EIELUIML . ettt t et e e et e et e e e e Post the estimation results
ESHMALES .« v vv vt e e e Save and manipulate estimation results
estimates describe i Describe estimation results

Combined subject table of contents v

(R]
(R]
[R]
(R]
(R]
[R]
(R]
(R]
(P]
(P]
(R]

Internet

(Ul
(R]
(D]
(D]
(R]
[R]
(R]
(R]
[R]
(R]
[R]
(D]

estimates for Repeat postestimation command across models
EStIMALES NOES . vt vttt ettt e e e Add notes to estimation results
estimates replay i Redisplay estimation results
ESHIMALES SAVE .« o v ottt e e et ie e eeeeann Save and use estimation results
EStIMALES SLALS . .ottt et e e Model-selection statistics
estimates StOrecveerenenenn... Store and restore estimation results
estimates table Compare estimation results
estimates title i Set title for estimation results
X 1 13 P Preserve stored results
TELUITL .« ettt ittt e e e e e e e e e e e e e e Return stored results
stored Tesultst Stored results
Chapter 28 Using the Internet to keep up to date
adoupdate Update user-written ado-files
checksum Calculate checksum of file
COPY + v ettt e e e Copy file from disk or URL
netovvevininann. Install and manage user-written additions from the Internet
netsearch Search the Internet for installable packages
NELO oottt e e e e Control Internet connections
DEWS .ot ettt ettt e e e e e e e Report Stata news
) Stata Journal and STB installation instructions
S8 4 e e Install and uninstall packages from SSC
UPAAE e ettt e Check for official updates
USE w ot ettt et e e e e e e e e e Load Stata dataset

Data types and memory

(U]
(Ul
(Ul
(U]
(Ul
(Ul
(D]
(D]
(R]
(D]
(D]
(D]

Chapter 6 e Managing memory
Section 12.2.2 e Numeric storage types
Section 12.4 . Strings
Section 12.4.2 ... Handling Unicode strings
Section 13.12 Precision and problems therein
Chapter 23 ... e Working with strings
(e0) 101 0) (T Compress data in memory
data types ... e Quick reference for data types
mMatsizeo.ienon.. Set the maximum number of variables in a model
INEIOTY « ettt ettt e e e e e e e et e e e Memory management
missing valueso Quick reference for missing values
TECASE vt vttt e e e e e Change storage type of variable

Advanced utilities

(D]
(D]
(D]
(D]
(D]
(P]
(D]
(R]
(P]
(D]

ASSEIT .« ottt e e Verify truth of claim
CA o Change directory
changeeol Convert end-of-line characters of text file
checksum Calculate checksum of file
COPY + e ettt e e e e Copy file from disk or URL
—datasignature00 Determine whether data have changed
datasignature, Determine whether data have changed
Ab Launch dialog
dialog programmingc...iiiiiiii i Dialog programming

AT e Display filenames

vi Combined subject table of contents

(P]
(D]
(P]
(D]
(D]
(D]
(R]
(R]
(P]
(D]
(R]
[R]
(R]
[R]
(P]
(P]
[R]
[R]
(R]
(D]
(P]
(P]
(P]
(D]
(D]
(D]
(D]
(D]
[R]

discard Drop automatically loaded programs
1] P Erase a disk file
file ... o Read and write text and binary files
filefilter Convert ASCII or binary patterns in a file
hexdump Display hexadecimal report on file
mMKAIr ..o Create directory
10T) (PP The —more— message
QUETY « et ettt et e e e e e e e Display system parameters
quietly ... Quietly and noisily perform Stata command
TMAIT . e Remove directory
P Overview of system parameters
setcformat, Format settings for coefficient tables
set_defaults Reset system parameters to original Stata defaults
set emptycells Set what to do with empty cells in interactions
set locale_functions Specify default locale for functions
set locale_ui Specify a localization package for the user interface
SELINZ . vvve et Set which random-number generator (RNG) to use
setseed ... Specify random-number seed and state
set showbaselevels Display settings for coefficient tables
shell ... Temporarily invoke operating system
signestimationsample Determine whether the estimation sample has changed
smel Lo Stata Markup and Control Language
SYSAIT v vt e Query and set system directories
117 07 Display contents of a file
unicode collator, Language-specific Unicode collators
unicode convertfile Low-level file conversion between encodings
unicode encoding i Unicode encoding utilities
unicode locale Unicode locale utilities
which L. Display location and version for an ado-file

Matrix commands

Basics
[U] Chapter 14 Matrix expressions
[P] matlist Display a matrix and control its format
[P] MALIIX . e e Introduction to matrix commands
[P] matrix define L. Matrix definition, operators, and functions
[P] matrix utility List, rename, and drop matrices
Programming
[P] 1< (=111 s Post the estimation results
[P] MAtriX QCCUM .ottt ettt e Form cross-product matrices
[P] MALTIX TOWNAMES . o vttt ettt ettt eie e e eeeen Name rows and columns
[P] MALHX SCOTE vt v i ettt et e Score data from coefficient vectors
[R] Ml Maximum likelihood estimation
M] Mata Reference Manual i
Other
[P] MAKECTIS oottt e e e Constrained estimation
[P] matrix dissimilarity Compute similarity or dissimilarity measures
[P] matrix eigenvalues Eigenvalues of nonsymmetric matrices

Combined subject table of contents vii

(P] MATTX 8L« vttt et e e e Access system matrices
[P] matrix mkmat Convert variables to matrix and vice versa
[P] matrix svd ... Singular value decomposition
[P] matrix symeigen Eigenvalues and eigenvectors of symmetric matrices
Mata
D] putmata, Put Stata variables into Mata and vice versa
M] Mata Reference Manual e
Programming
Basics
(Ul Chapter 18 Programming Stata
(U] Section 18.3 Macros
(U] Section 18. 11 o e Ado-files
[P] COMMENES ...ttt ettt e Add comments to programs
[P] fvexpand Expand factor varlists
(P] MACTO vttt ettt e Macro definition and manipulation
[P] PIOZIAM © v vttt ettt it Define and manipulate programs
[P] TELUITL & oottt ettt e et e e e e e Return stored results

Program control

(Ul
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]

Section 18. 11,1 ..o e Version
CAPLUTE . e vttt ettt e e e e e e e e e e e Capture return code
Te0) 1180 LI P Break out of loops
CITOT v vttt ettt e et e eene Display generic error message and exit
foreach Loop over items
forvalues i Loop over consecutive values
3 P if programming command
VETSION .« o ettt ettt e e e e e e e e e Version control
While .. e Looping

Parsing and program arguments

(Ul
(P]
(P]
(P]
(P]
(P]
(P]

Section 18.4 ... e Program arguments
CONfITM . .ot e Argument verification
GELOKEN .ot Low-level parsing
levelsof ... Levels of variable
NUMLISt .. Parse numeric lists
SYNEAX .. Parse Stata syntax
tokenize Divide strings into tokens

Console output

(U]
(P]
(P]
(P]
(P]
(D]

Section 12.4.2 ... Handling Unicode strings
dialog programmingiiiiiiiii i Dialog programming
display, Display strings and values of scalar expressions
smel Lo Stata Markup and Control Language
EaDAISD .ot e Display tables
UNICOE ottt e e e e Unicode utilities

viii Combined subject table of contents

Commonly used programming commands

(P]
(P]
(P]
[R]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
[TS]

Debugging
(P]
[P]
[P]

byable Make programs byable
#Aelimit ... Change delimiter
BXIE vt e Exit from a program or do-file
fvrevar oL, Factor-variables operator programming command
mark ... Mark observations for inclusion
MATIX vttt e Introduction to matrix commands
TNOTE « et ettt et et et e e e e e e e Pause until key is pressed
NOPIESEIVE OPLION . o ettt ettt et e e e eeeene nopreserve option
PIESEIVE . vttt ettt e e e e e e e e e Preserve and restore data
quietly ... Quietly and noisily perform Stata command
SCAlAr L. Scalar variables
smel .o Stata Markup and Control Language
SOTEPIESEIVE ..ttt i ittt ettt Sort within programs
timer Time sections of code by recording and reporting time spent
ESTEeVAr .. .vviiii i Time-series operator programming command
PAUSE ettt ettt Program debugging command
timer Time sections of code by recording and reporting time spent
LTACE v vttt e et et e e e Debug Stata programs

Advanced programming commands

(Ul
(M-5]
(M-5]
(P]
(P]
(P]
M-2]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(P]
(R]
[M-5]
[M-5]
(P]
(P]
(P]
(P]
(P]
(D]

Section 12.4.2.5 Sorting strings containing Unicode characters
PAf () e Create a PDF file
CdOCXHF() v Generate Office Open XML (.docx) file
AUEOMALION .« ot vttt ettt et et e e e e e e Automation
Dreak ... Suppress Break key
Char o Characteristics
class ... Object-oriented programming (classes)
ClaSS o Class programming
class exit Exit class-member program and return result
classutil Class programming utility
estat programming Controlling estat after user-written commands
—ESHMALES . ot vttt e Manage estimation results
file ... o Read and write text and binary files
findfile Find file in path
include ... Include commands from file
JAVA o Java plugins
javacall ... Call a static Java method
MACTO & vttt ettt e e et e et Macro definition and manipulation
Macro lISES ..ottt e Manipulate lists
ml Maximum likelihood estimation
1001070181011/ (5 P Model optimization
OPHMIZE() .« vt ettt et e e e e e e e e Function optimization
PIUgIN Load a plugin
postfile Post results in Stata dataset
—predict Obtain predictions, residuals, etc., after estimation programming command
program properties Properties of user-defined programs
putexcel Export results to an Excel file

putmataeieaa... Put Stata variables into Mata and vice versa

Combined subject table of contents ix

(P]
(P]
(P]
(P]
(D]
(P]
(P]
(D]
(D]
(P]
(P]
[M-5]

B (11 'y A Preserve stored results
_rmeoll L Remove collinear variables
LTODUSE o Robust variance estimates
SBISEL 4 vttt ettt e e Create and manipulate sersets
snapshot Save and restore data snapshots
UNAD ... Unabbreviate variable list
unabemd ... Unabbreviate command name
unicode collator, Language-specific Unicode collators
unicode convertfile Low-level file conversion between encodings
Varabbrev e Control variable abbreviation
VIBWSOUICE & vttt ettt et e et et et ettt et et e View source code
XL e Excel file I/O class

Special-interest programming commands

[R]
(MV]
MV]
[R]

(P]
M1l
[ST]
[SVY]
M1l
[TS]

Projects
(P]

DStat ... Report bootstrap results
cluster programming subroutines Add cluster-analysis routines
cluster programming utilities Cluster-analysis programming utilities
fvrevar oL Factor-variables operator programming command
matrix dissimilarity Compute similarity or dissimilarity measures
miselect, Programmer’s alternative to mi extract
SELIS et Survival analysis subroutines for programmers
svymarkout . Mark observations for exclusion on the basis of survey characteristics
technical Details for programmers
ESTEVAL vttt Time-series operator programming command
Project Manageroiiiiiii Organize Stata files

File formats

[P]
(D]
[DI]
Mata
M]

file formats .dta Description of .dta file format
unicode convertfile Low-level file conversion between encodings
unicode translate i Translate files to Unicode

Mata Reference Manual e

Interface features

(P]
[R]
(D]
(P]
(P]
(P]
(D]
(D]
(P]
(P]
(P]
(P]

dialog programmingiiiiie i, Dialog programming
doedit Edit do-files and other text files
edit ... Browse or edit data with Data Editor
set locale_ui Specify a localization package for the user interface
Sl o Pause for a specified time
smel .o Stata Markup and Control Language
unicode locale Unicode locale utilities
Varmanage Manage variable labels, formats, and other properties
VIBWSOUICE vt e it ettt et et e e et e et e e e View source code
window fopen i Display open/save dialog box
WIindow mManageieiiniiininan. Manage window characteristics
WINAOW MENU . ..ottt ettt e e e e Create menus

x Combined subject table of contents

[P] window programming Programming menus and windows
(P] window push oL Copy command into Review window
[P] window stopbox

Display message box

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s

Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[D] Stata Data Management Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TS] Stata Time-Series Reference Manual

[TE] Stata Treatment-Effects Reference Manual:
Potential Outcomes/Counterfactual Outcomes

[1] Stata Glossary and Index

[M] Mata Reference Manual

xi

Title

intro — Introduction to programming manual

Description References Also see

Description

In this manual, you will find

e matrix-manipulation commands, which are available from the Stata command line and
for ado-programming (for advanced matrix functions and a complete matrix programming
language, see the Mata Reference Manual)

e commands for programming Stata, and
e commands and discussions of interest to programmers.
This manual is referred to as [P] in cross-references and is organized alphabetically.

If you are new to Stata’s programming commands, we recommend that you first read the chapter
about programming Stata in the User’s Guide; see [U] 18 Programming Stata. After you read that
chapter, we recommend that you read the following sections from this manual:

[P] program Define and manipulate programs
[P] sortpreserve Sorting within programs

[P] byable Making programs byable

[P] macro Macro definition and manipulation

You may also find the subject table of contents helpful; it immediately follows the table of contents.

We also recommend the Stata NetCourses®. At the time this introduction was written, our current
offerings of Stata programming NetCourses included

NC-151 Introduction to Stata programming
NC-152 Advanced Stata programming

You can learn more about NetCourses and view the current offerings of NetCourses by visiting
http://www.stata.com/netcourse/.

Stata also offers public training courses. Visit http://www.stata.com/training/public.html for details.

To learn about writing your own maximum-likelihood estimation commands, read the book
Maximum Likelihood Estimation with Stata; see http://www.stata-press.com/books/ml4.html. To view
other Stata Press titles, see http://www.stata-press.com.

References
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.
Gould, W. W,, J. S. Pitblado, and B. P. Poi. 2010. Maximum Likelihood Estimation with Stata. 4th ed. College

Station, TX: Stata Press.
Also see

[U] 18 Programming Stata
[U] 1.3 What’s new

[R] intro — Introduction to base reference manual

http://www.stata.com/netcourse/
http://www.stata.com/training/public.html
http://www.stata-press.com/books/ml4.html
http://www.stata-press.com
http://www.stata-press.com/books/isp.html
http://www.stata-press.com/books/ml4.html

Title

automation — Automation

Description Remarks and examples Also see

Description

Automation (formerly known as OLE Automation) is a communication mechanism between Microsoft
Windows applications. It provides an infrastructure whereby Windows applications (automation clients)
can access and manipulate functions and properties implemented in another application (automation
server). A Stata Automation object exposes internal Stata methods and properties so that Windows
programmers can write automation clients to directly use the services provided by Stata.

Remarks and examples

A Stata Automation object is most useful for situations that require the greatest flexibility to interact
with Stata from user-written applications. A Stata Automation object enables users to directly access
Stata macros, scalars, stored results, and dataset information in ways besides the usual log files.

For documentation on using a Stata Automation object, see http://www.stata.com/automation/.

Note that the standard Stata end-user license agreement (EULA) does not permit Stata to be used
as an embedded engine in a production setting. If you wish to use Stata in such a manner, please
contact StataCorp at service @stata.com.

Also see
[P] plugin — Load a plugin

http://www.stata.com/automation/

Title

break — Suppress Break key

Description Syntax Remarks and examples Also see

Description

nobreak temporarily turns off recognition of the Break key. It is seldom used. break temporarily
reestablishes recognition of the Break key within a nobreak block. It is even more seldom used.

Syntax

nobreak stata_command
break stata_command

Typical usage is

nobreak {

capture noisily break ...

Remarks and examples
Stata commands honor the Break key. This honoring is automatic and, for the most part, requires
no special code, as long as you follow these guidelines:
1. Obtain names for new variables from tempvar; see [U] 18.7.1 Temporary variables.

2. Obtain names for other memory aggregates, such as scalars and matrices, from tempname; see
[U] 18.7.2 Temporary scalars and matrices.

3. If you need to temporarily change the user’s data, use preserve to save it first; see [U] 18.6 Tem-
porarily destroying the data in memory.

4. Obtain names for temporary files from tempfile; see [U] 18.7.3 Temporary files.

If you follow these guidelines, your program will be robust to the user pressing Break because Stata
itself will be able to put things back as they were.

Still, sometimes a program must commit to executing a group of commands that, if Break were
honored in the midst of the group, would leave the user’s data in an intermediate, undefined state.
nobreak is for those instances.

4 break — Suppress Break key

> Example 1

You are writing a program and following all the guidelines listed above. In particular, you are
using temporary variables. At a point in your program, however, you wish to list the first five
values of the temporary variable. You would like, temporarily, to give the variable a pretty name, so
you temporarily rename it. If the user were to press Break during the period, the variable would be
renamed; however, Stata would not know to drop it, and it would be left behind in the user’s data.
You wish to avoid this. In the code fragment below, ‘myv’ is the temporary variable:

nobreak {
rename ‘myv’ Result
list Result in 1/5
rename Result ‘myv’

}

It would not be appropriate to code the fragment as

nobreak rename ‘myv’ Result
nobreak list Result in 1/5
nobreak rename Result ‘myv’

because the user might press Break during the periods between the commands.

Also see
[P] capture — Capture return code
[P] continue — Break out of loops
[P] quietly — Quietly and noisily perform Stata command
[P] varabbrev — Control variable abbreviation
[U] 9 The Break key

Title

byable — Make programs byable

Description Syntax Option Remarks and examples Also see

Description

Most Stata commands allow the use of the by prefix; see [D] by. For example, the syntax diagram
for the regress command could be presented as

[by varlist :] regress ...
This entry describes the writing of programs (ado-files) so that they will allow the use of Stata’s

by varlist: prefix; see [D] by. If you take no special actions and write the program myprog, then by
varlist: cannot be used with it:

. by foreign: myprog
myprog may not be combined with by
r(190);
By reading this entry, you will learn how to modify your program so that by does work with it:
. by foreign: myprog

-> foreign = Domestic
(output for first by-group appears)

-> foreign = Foreign
(output for first by-group appears)

Syntax
program [@fine} program_name
[» ... byable (;ecall[s @eader] | onecall) .. }
Option

byable (recall[, noheader] | onecall) specifies that the program is to allow the by prefix to
be used with it and specifies the style in which the program is coded.

There are two supported styles, known as byable(recall) and byable(onecall).
byable(recall) programs are usually—not always—easier to write and byable(onecall)
programs are usually—not always—{faster.

byable(recall) programs are executed repeatedly, once per by group. byable(onecall)
programs are executed only once and it is the program’s responsibility to handle the implications
of the by prefix if it is specified.

byable(recall, noheader) programs are distinguished from byable(recall) programs in
that by will not display a by-group header before each calling of the program.

byable(onecall) programs are required to handle the by...: prefix themselves, including
displaying the header should they wish that. See Remarks and examples for details.

5

6 byable — Make programs byable

Remarks and examples

Remarks are presented under the following headings:

byable(recall) programs

Using sort in byable(recall) programs

Byable estimation commands

byable(onecall) programs

Using sort in byable(onecall) programs
Combining byable(onecall) with byable(recall)
The by-group header

If you have not read [P] sortpreserve, please do so.

Programs that are written to be used with by varlist: are said to be “byable”. Byable programs
do not require the use of by varlist:; they merely allow it. There are two ways that programs can
be made byable, known as byable(recall) and byable(onecall).

byable(recall) is easy to use and is sufficient for programs that report the results of calculation
(class-1 programs as defined in [P] sortpreserve). byable(recall) is the method most commonly
used to make programs byable.

byable(onecall) is more work to program and is intended for use in all other cases (class-2
and class-3 programs as defined in [P] sortpreserve).

byable(recall) programs

Say that you already have written a program (ado-file) and that it works; it merely does not allow
by. If your program reports the results of calculations (such as summarize, regress, and most of
the other statistical commands), then probably all you have to do to make your program byable is
add the byable(recall) option to its program statement. For instance, if your program statement
currently reads

program myprog, rclass sortpreserve
end

change it to read

program myprog, rclass sortpreserve byable(recall)

end

The only change you should need to make is to add byable(recall) to the program statement.
Adding byable(recall) will be the only change required if

e Your program leaves behind no newly created variables. Your program might create temporary
variables in the midst of calculation, but it must not leave behind new variables for the user.
If your program has a generate() option, for instance, some extra effort will be required.

e Your program uses marksample or mark to restrict itself to the relevant subsample of the
data. If your program does not use marksample or mark, some extra effort will be required.

Here is how byable(recall) works: if your program is invoked with a by varlist: prefix, your
program will be executed K times, where K is the number of by-groups formed by the by-variables.
Each time your program is executed, marksample will know to mark out the observations that are
not being used in the current by-group.

byable — Make programs byable 7

Therein is the reason for the two guidelines on when you need to include only byable(recall)
to make by varlist: work:

e If your program creates permanent, new variables, then it will create those variables when
it is executed for the first by-group, meaning that those variables will already exist when it
is executed for the second by-group, causing your program to issue an error message.

e If your program does not use marksample to identify the relevant subsample of the data,
then each time it is executed, it will use too many observations—it will not honor the
by-group—and will produce incorrect results.

There are ways around both problems, and here is more than you need:
function _by () takes no arguments; returns 0 when program is not being by’d;

returns 1 when program is being by’d.

function _byindex () takes no arguments; returns 1 when program is not being by’d;
returns 1, 2, ... when by’d and 1st call, 2nd call,
function _bylastcall() takes no arguments; returns 1 when program is not being by’d

and is being called with the last by-group; returns O otherwise.

function _byn1 () takes no arguments; returns the beginning observation number of
the by-group currently being executed; returns 1 if _by ()==0.
The value returned by _byn1 () is valid only if the data have
not been re-sorted since the original call to the by program.

function _byn2() takes no arguments; returns the ending observation number of the
by-group currently being executed; returns 1 if _by ()==0. The
value returned by _byn2() is valid only if the data have not
been re-sorted since the original call to by program.

macro ¢

_byindex’ contains nothing when program is not being by’d; contains name
of temporary variable when program is being by’d: variable contains
1, 2, ... for each observation in data and recorded value indicates
to which by-group each observation belongs.

(4

macro ‘_byvars’ contains nothing when program is not being by’d;
contains names of the actual by-variables otherwise.

4

macro ‘_byrc0’ contains “, rc0” if the rcO option is specified; contains

nothing otherwise.

So let’s consider the problems one at a time, beginning with the second problem. Your program
does not use marksample, and we will assume that your program has good reason for not doing so,
because the easy fix would be to use marksample. Still, your program must somehow be determining
which observations to use, and we will assume that you are creating a ‘touse’ temporary variable
containing 0 if the observation is to be omitted from the analysis and 1 if it is to be used. Somewhere,
early in your program, you are setting the ‘touse’ variable. Right after that, make the following
addition (shown in bold):

program ..., ... byable(recall)
it _byO {
quietly replace ‘touse’ = 0 if ¢_byindex’ != _byindex()
}
end

The fix is easy: you ask if you are being by’d and, if so, you set ‘touse’ to 0 in all observations for
which the value of ‘byindex’ is not equal to the by-group you are currently considering, namely,
_byindex ().

8 byable — Make programs byable

The first problem is also easy to fix. Say that your program has a generate(newvar) option.
Your code must therefore contain

program ..., ...
ié."‘generate’" 1= £
}

end o

Change the program to read

program ..., ... byable(recall)
if."‘generate’" !="" g _bylastcall() {
) R

o R

_bylastcall() will be 1 (meaning true) whenever your program is not being by’d and, when it is
being by’d, whenever the program is being executed for the last by-group. The result is that the new
variable will be created containing only the values for the last by-group, but with a few exceptions,
that is how all of Stata works. Alternatives are discussed under byable (onecall).

All the other macros and functions that are available are for creating special effects and are rarely
used in byable(recall) programs.

Using sort in byable(recall) programs

You may use sort freely within byable(recall) programs, and in fact, you can use any other
Stata command you wish; there are simply no issues. You may even use sortpreserve to restore
the sort order at the conclusion of your program; see [P] sortpreserve.

We will discuss the issue of sort in depth just to convince you that there is nothing with which
you must be concerned.

When a byable(recall) program receives control and is being by’d, the data are guaranteed to
be sorted by ¢ _byvars’ only when _byindex() = 1—only on the first call. If the program re-sorts
the data, the data will remain re-sorted on the second and subsequent calls, even if sortpreserve
is specified. This may sound like a problem, but it is not. sortpreserve is not being ignored; the
data will be restored to their original order after the final call to your program. Let’s go through the
two cases: either your program uses sort or it does not.

1. If your program needs to use sort, it will probably need a different sort order for each
by-group. For instance, a typical program that uses sort will include lines such as

sort ‘touse’ ‘id’ ...

and so move the relevant sample to the top of the dataset. This byable(recall) program
makes no reference to the ‘ _byvars’ themselves, nor does it do anything differently when
the by prefix is specified and when it is not. That is typical; byable (recall) programs
rarely find it necessary to refer to the ‘_byvars’ directly.

In any case, because this program is sorting the data explicitly every time it is called (and we
know it must be because byable (recall) programs are executed once for each by-group),
there is no reason for Stata to waste its time restoring a sort order that will just be undone
anyway. The original sort order needs to be reestablished only after the final call.

byable — Make programs byable 9

2. The other alternative is that the program does not use sort. Then it is free to exploit that the
data are sorted on ‘_byvars’. Because the data will be sorted on the first call, the program
does no sorts, so the data will be sorted on the second call, and so on. byable(recall)
programs rarely exploit the sort order, but the program is free to do so.

Byable estimation commands

Estimation commands are natural candidates for the byable (recall) approach. There is, however,
one issue that requires special attention. Estimation commands really have two syntaxes: one at the
time of estimation,

[prefix—command: | estcmd varlist ... |, estimation_options replay_options |
and another for redisplaying results:
estcmd | , replay_options |

With estimation commands, by is not allowed when results are redisplayed. We must arrange for this
in our program, and that is easy enough. The general outline for an estimation command is

program estcmd, ...
if replay() {
if "‘e(emd)’"!="estcmd" error 301
syntax [, replay_options]

}

else {
syntax ... [, estimation_options replay_options]
.. . estimation logic. . .

}

.. .display logic. . .

and to this, we make the changes shown in bold:

program estcmd, ... byable(recall)
if replay() {
if "‘e(emd)’"!="estcmd" error 301
if _by() error 190
syntax [, replay_options]

}

else {
syntax ... [, estimation_options replay_options]
. . . estimation logic. . .

}

.. .display logic. . .
In addition to adding byable(recall), we add the line

if _by() error 190

in the case where we have been asked to redisplay results. If we are being by’d (if _by () is true),
then we issue error 190 (request may not be combined with by).

10 byable — Make programs byable

byable(onecall) programs

byable(onecall) requires more work to use. We strongly recommend using byable (recall)
whenever possible.

The main use of byable(onecall) is to create programs such as generate and egen, which
allow the by prefix but operate on all the data and create a new variable containing results for all the
different by-groups.

byable(onecall) programs are, as the name implies, executed only once. The byable (onecall)
program is responsible for handling all the issues concerning the by, and it is expected to do that by
using

function _by () takes no arguments
returns 0 when program is not being by’d
returns 1 when program is being by’d

macro ‘_byvars’ contains nothing when program is not being by’d
contains names of the actual by-variables otherwise
macro ‘_byrc0’ contains nothing or “rc0”

contains “, rc0” if by’s rcO option was specified

In byable (onecall) programs, you are responsible for everything, including the output of by-group
headers if you want them.

The typical candidates for byable(onecall) are programs that do something special and odd
with the by-variables. We offer the following guidelines:

1. Ignore that you are going to make your program byable when you first write it. Instead,
include a by() option in your program. Because your program cannot be coded using
byable(recall), you already know that the by-variables are entangled with the logic of
your routine. Make your program work before worrying about making it byable.

2. Now go back and modify your program. Include byable(onecall) on the program
statement line. Remove by(varlist) from your syntax statement, and immediately after
the syntax statement, add the line

local by "‘_byvars’"

3. Test your program. If it worked before, it will still work now. To use the by () option, you
put the by varlist: prefix out front.

4. Ignore the macro ‘_byrcO’. Byable programs rarely do anything different when the user
specifies by’s rcO option.

Using sort in byable(onecall) programs

You may use sort freely within byable (onecall) programs. You may even use sortpreserve
to restore the sort order at the conclusion of your program.

When a byable(onecall) program receives control and is being by’d, the data are guaranteed
to be sorted by ‘_byvars’.

byable — Make programs byable 11

Combining byable(onecall) with byable(recall)

byable(onecall) can be used as an interface to other byable programs. Let’s pretend that you
are writing a command—we will call it switcher—that calls one of two other commands based
perhaps on some aspect of what the user typed or, perhaps, based on what was previously estimated.
The rule by which switcher decides to call one or the other does not matter for this discussion; what
is important is that switcher switches between what we will call progl and prog2. progl and
prog2 might be actual Stata commands, Stata commands that you have written, or even subroutines
of switcher.

We will further imagine that prog1 and prog?2 have been implemented using the byable (recall)
method and that we now want switcher to allow the by prefix, too. The easy way to do that is

program switcher, byable(onecall)
if _by(O {
local by "by ‘_byvars’ ‘_byrcO’:"

}

if (whatever makes us decide in favor of progl) {
‘by’ progl ‘0’

}

else ‘by’ prog2 ‘0’

end

switcher works by re-creating the by varlist: prefix in front of progl or prog?2 if by was specified.
switcher will be executed only once, even if by was specified. progl and prog2 will be executed
repeatedly.

In the above outline, it is not important that progl and prog2 were implemented using the
byable(recall) method. They could just as well be implemented using byable (onecall), and
switcher would change not at all.

The by-group header
Usually, when you use a command with by, a header is produced above each by-group:

. by foreign: summarize mpg weight

-> foreign = Domestic

(output for first by-group appears)

-> foreign = Foreign
(output for first by-group appears)

The by-group header does not always appear:

. by foreign: generate new = sum(mpg)

When you write your own programs, the header will appear by default if you use byable(recall)
and will not appear if you use byable (onecall).

If you want the header and use byable(onecall), you will have to write the code to output it.

12 byable — Make programs byable

If you do not want the header and use byable(recall), you can specify byable(recall,
noheader):

program ..., ... byable(recall, noheader)

end

Also see

[P] program — Define and manipulate programs
[P] sortpreserve — Sort within programs

[D] by — Repeat Stata command on subsets of the data

Title

capture — Capture return code

Description Syntax Remarks and examples Also see

Description

capture executes command, suppressing all its output (including error messages, if any) and
issuing a return code of zero. The actual return code generated by command is stored in the built-in
scalar _rc.

capture can be combined with {3} to produce capture blocks, which suppress output for the block
of commands. See the technical note following example 6 for more information.

Syntax

capture [] command

capture {
stata_commands

}

Remarks and examples

capture is useful in do-files and programs because their execution terminates when a command
issues a nonzero return code. Preceding sensitive commands with the word capture allows the
do-file or program to continue despite errors. Also do-files and programs can be made to respond
appropriately to any situation by conditioning their remaining actions on the contents of the scalar
-Irc.

> Example 1

You will never have cause to use capture interactively, but an interactive experiment will
demonstrate what capture does:

. drop _all

. list myvar
no variables defined
r(111);

. capture list myvar
. display _rc
111

13

14 capture — Capture return code

When we said 1ist myvar, we were told that we had no variables defined and got a return code of
111. When we said capture 1ist myvar, we got no output and a zero return code. First, you should
wonder what happened to the message “no variables defined”. capture suppressed that message. It
suppresses all output produced by the command it is capturing. Next we see no return code message,
so the return code was zero. We already know that typing 1ist myvar generates a return code of
111, so capture suppressed that, too.

capture places the return code in the built-in scalar _rc. When we display the value of this
scalar, we see that it is 111.

N

> Example 2

Now that we know what capture does, let’s put it to use. capture is used in programs and
do-files. Sometimes you will write programs that do not care about the outcome of a Stata command.
You may want to ensure, for instance, that some variable does not exist in the dataset. You could do
so by including capture drop result.

If result exists, it is now gone. If it did not exist, drop did nothing, and its nonzero return
code and the error message have been intercepted. The program (or do-file) continues in any case.
If you have written a program that creates a variable named result, it would be good practice to
begin such a program with capture drop result. This way, you could use the program repeatedly
without having to worry whether the result variable already exists.

d

Q Technical note

When combining capture and drop, never say something like capture drop varl var2 var3.
Remember that Stata commands do either exactly what you say or nothing at all. We might think
that our command would be guaranteed to eliminate varl, var2, and var3 from the data if they
exist. It is not. Imagine that var3 did not exist in the data. drop would then do nothing. It would
not drop varl and var2. To achieve the desired result, we must give three commands:

capture drop varl
capture drop var2
capture drop var3

> Example 3

Here is another example of using capture to dispose of nonzero return codes: When using do-files
to define programs, it is common to begin the definition with capture program drop progname and
then put program progname. This way, you can rerun the do-file to load or reload the program.

N

> Example 4

Let’s consider programs whose behavior is contingent upon the outcome of some command. You
write a program and want to ensure that the first argument (the macro ¢17) is interpreted as a new
variable. If it is not, you want to issue an error message:

capture — Capture return code 15

capture confirm new variable ‘1’

if _rc!=0 {
display "‘1’ already exists"
exit _rc

}

(program continues. . .)

You use the confirm command to determine if the variable already exists and then condition your
error message on whether confirm thinks ‘1’ can be a new variable. We did not have to go to
the trouble here. confirm would have automatically issued the appropriate error message, and its
nonzero return code would have stopped the program anyway.

4

> Example 5

As before, you write a program and want to ensure that the first argument is interpreted as a new
variable. This time, however, if it is not, you want to use the name _answer in place of the name
specified by the user:

capture confirm new variable ‘1’
if _rc!'=0 {

local 1 _answer

confirm new variable ‘1’

}

(program continues. . .)

> Example 6

There may be instances where you want to capture the return code but not the output. You do that
by combining capture with noisily. For instance, we might change our program to read

capture noisily confirm new variable ‘1’
if _rc!=0 {
local 1 _answer
display "I’1l use _answer"
}
(program continues. . .)

13

confirm will generate some message such as “...already exists”, and then we will follow that

message with “T’ll use _answer”.

N

Q Technical note
capture can be combined with {} to produce capture blocks. Consider the following:

capture {
confirm var ‘1’
confirm integer number €2’
confirm number €3’

}

if _rc!'=0 {
display "Syntax is variable integer number"
exit 198

}

(program continues. . .)

16 capture — Capture return code

If any of the commands in the capture block fail, the subsequent commands in the block are aborted,
but the program continues with the if statement.

Capture blocks can be used to intercept the Break key, as in

capture {
stata_commands
}
if _re==1 {
Break key cleanup code
exit 1
¥

(program continues. . .)

Remember that Break always generates a return code of 1. There is no reason, however, to restrict
the execution of the cleanup code to Break only. Our program might fail for some other reason,
such as insufficient room to add a new variable, and we would still want to engage in the cleanup
operations. A better version would read

capture {
stata_commands
¥
if _rc!'=0 {
local oldrc = _rc
Break key and error cleanup code
exit ‘oldrc’
¥

(program continues. . .)

Q Technical note

If, in our program above, the stata_commands included an exit or an exit O, the program would
terminate and return 0. Neither the cleanup nor the program continues code would be executed. If
stata_commands included an exit 198, or any other exit that sets a nonzero return code, however,
the program would not exit. capture would catch the nonzero return code, and execution would
continue with the cleanup code.

a

Also see
[P] break — Suppress Break key
[P] confirm — Argument verification
[P] quietly — Quietly and noisily perform Stata command

[U] 18.2 Relationship between a program and a do-file

Title

char — Characteristics

Description Syntax Option Remarks and examples Also see

Description

See [U] 12.8 Characteristics for a description of characteristics. These commands allow manipu-
lating characteristics.

Syntax
Define characteristics

char [define] evarname [charname] [["}text["]]

List characteristics

char list [evarname[[chamame}]]

Rename characteristics

char rename oldvar newvar [, replace}

where evarname is a variable name or _dta and charname is a characteristic name. In the syntax
diagrams, distinguish carefully between [], which you type, and [], which indicates that the
element is optional.

Option

replace (for use only with char rename) specifies that if characteristics of the same name already
exist, they are to be replaced. replace is a seldom-used, low-level, programmer’s option.

char rename oldvar newvar moves all characteristics of oldvar to newvar, leaving oldvar with
none and newvar with all the characteristics oldvar previously had. char rename oldvar newvar
moves the characteristics, but only if newvar has no characteristics with the same name. Otherwise,
char rename produces the error message that newvar[whatever] already exists.

Remarks and examples

We begin by showing how the commands work mechanically and then continue to demonstrate
the commands in more realistic situations.

char define sets and clears characteristics, although there is no reason to type define:

. char _dtal[one] this is char named one of _dta

. char _dta[two]l this is char named two of _dta

. char mpglone] this is char named one of mpg
. char mpg[two]l "this is char named two of mpg"
. char mpg[three] "this is char named three of mpg"

17

18 char — Characteristics

Whether we include the double quotes does not matter. You clear a characteristic by defining it to be
nothing:

. char mpgl[three]

char list is used to list existing characteristics; it is typically used for debugging:

. char list
_dtaltwo] : this is char named two of _dta
_dta[one] : this is char named one of _dta
mpg [two] : this is char named two of mpg
mpg [one] : this is char named one of mpg
. char list _dtal]
_dtal[two] : this is char named two of _dta
_dtalone] ¢ this is char named one of _dta
. char list mpgl[]
mpg [two] : this is char named two of mpg
mpg [one] ¢ this is char named one of mpg

. char list mpg[one]
mpg [one] : this is char named one of mpg

The order may surprise you—it is the way it is because of how Stata’s memory-management routines
work—but it does not matter.

char rename moves all the characteristics associated with oldvar to newvar:

. char rename mpg weight

. char list
_dta[two] : this is char named two of _dta
_dta[one] : this is char named one of _dta
weight [two] ¢ this is char named two of mpg
weight [one] : this is char named one of mpg
. char rename weight mpg // put it back

The contents of specific characteristics may be obtained in the same way as local macros by
referring to the characteristic name between left and right single quotes; see [U] 12.8 Characteristics.

. display " ‘mpglone]’"

this is char named one of mpg
. display "‘_dta[]’"
two one

Referring to a nonexisting characteristic returns a null string:

. display "the value is | ‘mpg[three]’|"
the value is ||

How to program with characteristics

> Example 1

You are writing a program that requires the value of the variable recording “instance” (first time,
second time, etc.). You want your command to have an option ins (varname), but after the user has
specified the variable once, you want your program to remember it in the future, even across sessions.
An outline of your program is

char — Characteristics 19

program . ..

version 14

syntax ... [, ... ins(varname) ...]

;L.;f ’ nejpngin==nn

local ins "‘_dtal[Instance]’"

}

confirm variable ‘ins’

char _dtal[Instance] : ‘ins’

end
N

> Example 2

You write a program, and among other things, it changes the contents of one of the variables in
the user’s data. You worry about the user pressing Break while the program is in the midst of the
change, so you correctly decide to construct the replaced values in a temporary variable and, only
at the conclusion, drop the user’s original variable and replace it with the new one. In this example,
macro ‘uservar’ contains the name of the user’s original variable. Macro ‘newvar’ contains the
name of the temporary variable that will ultimately replace it.

The following issues arise when you duplicate the original variable: you want the new variable to
have the same variable label, the same value label, the same format, and the same characteristics.

program ...
version 14
tempvar newvar
(code creating ‘newvar’)
local varlab : variable label ‘uservar’
local vallab : value label ‘uservar’
local format : format ‘uservar’
label var ‘newvar’ "‘varlab’"
label values ‘newvar’ ‘vallab’
format ‘newvar’ ‘format’
char rename ‘uservar’ ‘newvar’
drop ‘uservar’
rename ‘newvar’ ‘uservar’

end

You are supposed to notice the char rename command included to move the characteristics originally
attached to ‘uservar’ to ‘newvar’. See [P] macro, [D] label, and [D] format for information on
the commands preceding the char rename command.

This code is almost perfect, but if you are really concerned about the user pressing Break, there
is a potential problem. What happens if the user presses Break between the char rename and the
final rename? The last three lines would be better written as

nobreak {
char rename ‘uservar’ ‘newvar’
drop ‘uservar’
rename ‘newvar’ ‘uservar’

}

Now even if the user presses Break during these last three lines, it will be ignored; see [P] break.

4

20 char — Characteristics

Also see
[P] macro — Macro definition and manipulation
[D] notes — Place notes in data
[U] 12.8 Characteristics
[U] 18.3.6 Extended macro functions
[U] 18.3.13 Referring to characteristics

Title

class — Class programming

Description Remarks and examples Also see

Description

Stata’s two programming languages, ado and Mata, each support object-oriented programming. This
manual entry explains object-oriented programming in ado. Most users interested in object-oriented

programming will wish to do so in Mata. See [M-2] class to learn about object-oriented programming
in Mata.

Ado classes are a programming feature of Stata that are especially useful for dealing with graphics
and GUI problems, although their use need not be restricted to those topics. Ado class programming
is an advanced programming topic and will not be useful to most programmers.

Remarks and examples

Remarks are presented under the following headings:

1. Introduction
2. Definitions
2.1 Class definition
2.2 Class instance
2.3 Class context
3. Version control
4. Member variables
4.1 Types
4.2 Default initialization
4.3 Specifying initialization
4.4 Specifying initialization 2, .new
4.5 Another way of declaring
4.6 Scope
4.7 Adding dynamically
4.8 Advanced initialization, .oncopy
4.9 Advanced cleanup, destructors
5. Inheritance
. Member programs’ return values
7. Assignment
7.1 Type matching
7.2 Arrays and array elements
7.3 lvalues and rvalues
7.4 Assignment of reference
8. Built-ins
8.1 Built-in functions
8.2 Built-in modifiers
9. Prefix operators
10. Using object values
11. Object destruction
12. Advanced topics
12.1 Keys
12.2 Unames
12.3 Arrays of member variables
Appendix A. Finding, loading, and clearing class definitions
Appendix B. Jargon

(=)

21

22 class — Class programming

Appendix C. Syntax diagrams
Appendix C.1 Class declaration
Appendix C.2 Assignment
Appendix C.3 Macro substitution
Appendix C.4 Quick summary of built-ins

1. Introduction

A class is a collection of member variables and member programs. The member programs of a
class manipulate or make calculations based on the member variables. Classes are defined in .class
files. For instance, we might define the class coordinate in the file coordinate.class:

begin coordinate.class

version 14
class coordinate {

double x
N double y
program .set

args x y

x = ‘x’

y = ty)

end

end coordinate.class

The above file does not create anything. It merely defines the concept of a “coordinate”. Now that
the file exists, however, you could create a “scalar” variable of type coordinate by typing

.coord = .coordinate.new
.coord is called an instance of coordinate; it contains .coord.x (a particular x coordinate)

and .coord.y (a particular y coordinate). Because we did not specify otherwise, .coord.x and
.coord.y contain missing values, but we could reset .coord to contain (1,2) by typing

.coord.x =1
.coord.y = 2

Here we can do that more conveniently by typing
.coord.set 1 2
because coordinate.class provides a member program called .set that allows us to set the
member variables. There is nothing especially useful about .set; we wrote it mainly to emphasize
that classes could, in fact, contain member programs. Our coordinate.class definition would be

nearly as good if we deleted the .set program. Classes are not required to have member programs,
but they may.

If we typed

.coord2 = .coordinate.new
.coord2.set 2 4

we would now have a second instance of a coordinate, this one named .coord2, which would
contain (2,4).

Now consider another class, 1ine.class:

class — Class programming 23

version 14
class line {

coordinate cO
coordinate cl

}

program .set

args x0 yO x1 yi
.cO.set ‘x0’ ‘yO’
.cl.set ‘x1’ ‘y1°

end
program .length

class exit

end
program .midpoint

begin line.class

sqrt((¢.cO.y’=“.cl.y’)"2 + (“.c0.x’-“.c1.x’)"2)

local cx = (‘.c0.x’ + “.cl.x’)/2
local cy = (“.cO.y> + “.cl.y’)/2
tempname b
.‘b’=.coordinate.new

.‘b’.set ‘cx’

¢

class exit .‘Db’

end

cy’

end line.class

Like coordinate.class, line.class has two member variables—named .cO and .c1l—but
rather than being numbers, .cO and .cl are coordinates as we have previously defined the term.
Thus the full list of the member variables for 1line.class is

If we typed

.1i = .line.new

.c0
.c0.x
.cO.y
.cl
.cl.x
.cl.y

first coordinate

x value (a double)
y value (a double)
second coordinate
x value (a double)
y value (a double)

we would have a 1ine named .1i in which

J1i.
J1i.
J1i.
J1i.
J1i.
.cl.y

.1i

cO
cO0.x
cO0.y
cl
cl.x

first coordinate of line .1i

x value (a double)

y value (a double)

second coordinate of line .1i
x value (a double)

y value (a double)

What are the values of these variables? Because we did not specify otherwise, .1i.cO and .1i.c1
will receive default values for their type, coordinate. That defaultis (.,.) because we did not specify
otherwise when we defined 1ines or coordinates. Therefore, the default values are (.,.) and (.,.),

and we have a missing line.

As with coordinate, we included the member function .set to make setting the line easier. We

can type
dli.set 1 22 4

and we will have a line going from (1,2) to (2,4).

24 class — Class programming

line.class contains the following member programs:

.set program to set .cO and .c1l

.c0.set program to set .cO

.cl.set program to set .cl

.length program to return length of line

.midpoint program to return coordinate of midpoint of line

.set, .length, and .midpoint came from line.class. .cO.set and .cl.set came from
coordinate.class.

Member program .length returns the length of the line.
.len = .li.length

would create . len containing the result of .1i.length. The result of running the program .length
on the object .1i. .length returns a double, and therefore, .1len will be a double.

.midpoint returns the midpoint of a line.
.mid = .li.midpoint

would create .mid containing the result of .1li.midpoint, the result of running the program
.midpoint on the object .1i. .midpoint returns a coordinate, and therefore, .mid will be a
coordinate.

2. Definitions

2.1 Class definition

Class classname is defined in file classname . class. The definition does not create any instances
of the class.

The classname . class file has three parts:

begin classname.class

version ... // Part 1: version statement
class classname { // Part 2: declaration of member variables

}

program ... // Part 3: code for member programs

end
program ...

end

end classname.class

2.2 Class instance

To create a “variable” name of type classname, you type

.name = .classname.new

class — Class programming 25

After that, .name is variously called an identifier, class variable, class instance, object, object
instance, or sometimes just an instance. Call it what you will, the above creates new .name—or
replaces existing .name—to contain the result of an application of the definition of classname. And,
just as with any variable, you can have many different variables with many different names all the
same type.

.name is called a first-level or top-level identifier. .namel .name?2 is called a second-level identifier,
and so on. Assignment into top-level identifiers is allowed if the identifier does not already exist or
if the identifier exists and is of type classname. If the top-level identifier already exists and is of a
different type, you must drop the identifier first and then re-create it; see 11. Object destruction.

Consider the assignment

.namel .name2 = .classname.new

The above statement is allowed if . namel already exists and if . name?2 is declared, in .namel’s class
definition, to be of type classname. In that case, .namel .name2 previously contained a classname
instance and now contains a classname instance, the difference being that the old contents were
discarded and replaced with the new ones. The same rule applies to third-level and higher identifiers.

Classes, and class instances, may also contain member programs. Member programs are identified
in the same way as class variables. .namel .name2 might refer to a member variable or to a member
program.

2.3 Class context

When a class program executes, it executes in the context of the current instance. For example,
consider the instance creation

.mycoord = .coordinate.new

and recall that coordinate.class provides member program .set, which reads

program .set
args x y
‘X’
ly)
end

Assume that we type “.mycoord.set 2 4”. When .set executes, it executes in the context of
.mycoord. In the program, the references to .x and .y are assumed to be to .mycoord.x and
.mycoord.y. If we typed “.other.set”, the references would be to .other.x and .other.y.

Look at the statement “.x = ‘x’” in .set. Pretend that ‘x’ is 2 so that, after macro substitution,
the statement reads “.x = 2”. Is this a statement that the first-level identifier .x is to be set to 2?
No, it is a statement that .impliedcontext.x is to be set to 2. The same would be true whether .x
appeared to the right of the equal sign or anywhere else in the program.

The rules for resolving things like .x and .y are actually more complicated. They are resolved to
the implied context if they exist in the implied context, and otherwise they are interpreted to be in
the global context. Hence, in the above examples, .x and .y were interpreted as being references to
.impliedcontext.x and .impliedcontext.y because .x and .y existed in .impliedcontext. If, however,
our program made a reference to .c, that would be assumed to be in the global context (that is, to
be just .c), because there is no .c in the implied context. This is discussed at length in 9. Prefix
operators.

If a member program calls a regular program—a regular ado-file—that program will also run in
the same class context; for example, if .set included the lines

26 class — Class programming

move_to_right
x = r(x)
-y =y
and program move_to_right.ado had lines in it referring to .x and .y, they would be interpreted

as .impliedcontext.x and .impliedcontext.y.

In all programs—member programs or ado-files—we can explicitly control whether we want
identifiers in the implied context or globally with the .Local and .Global prefixes; see 9. Prefix
operators.

3. Version control

The first thing that should appear in a .class file is a version statement; see [P] version. For
example, coordinate.class reads

begin coordinate.class

version 14
[class statement defining member variables omitted]
program .set

args x y
x = ‘x?
.y = cy)

end

end coordinate.class

The version 14 at the top of the file specifies not only that, when the class definition is read,
it be interpreted according to version 14 syntax, but also that when each of the member programs
runs, it be interpreted according to version 14. Thus you do not need to include a version statement
inside the definition of each member program, although you may if you want that one program to
run according to the syntax of a different version of Stata.

Including the version statement at the top, however, is of vital importance. Stata is under continual
development, and so is the class subsystem. Syntax and features can change. Including the version
command ensures that your class will continue to work as you intended.

4. Member variables

4.1 Types

The second thing that appears in a .class file is the definition of the member variables. We have
seen two examples:

begin coordinate.class

version 14

class coordinate {
double x
double y

¥

[member programs omitted |

end coordinate.class

and

class — Class programming 27

begin line.class ————

version 14
class line {
coordinate cO
coordinate cl
¥

[member programs omitted]

end line.class —

In the first example, the member variables are .x and .y, and in the second, .cO and .c1. In the
first example, the member variables are of type double, and in the second, of type coordinate,
another class.

The member variables may be of type

double double-precision scalar numeric value, which
includes missing values ., .a, ..., and .z
string scalar string value, with minimum length O ("")

and maximum length the same as for macros,
in other words, long

The class string type is different from Stata’s str# and strL
types. It can hold much longer string values than can the str#
type, but not as long of string values as the strL type.
Additionally, unlike strLs, class strings cannot contain binary 0.

classname other classes, excluding the class being defined
array array containing any of the fypes, including other arrays

A class definition might read

begin todolist.class ————

version 14
class todolist {

double n /I number of elements in list
string name // who the list is for

array list // the list itself

actions x // things that have been done

end todolist.class —

In the above, actions is a class, not a primitive type. Somewhere else, we have written ac-
tions.class, which defines what we mean by actions.

arrays are not typed when they are declared. An array is not an array of doubles or an array of
strings or an array of coordinates; rather, each array element is separately typed at run time, so
an array may turn out to be an array of doubles or an array of strings or an array of coordinates,
or it may turn out that its first element is a double, its second element is a string, its third element
is a coordinate, its fourth element is something else, and so on.

Similarly, arrays are not declared to be of a predetermined size. The size is automatically
determined at run time according to how the array is used. Also arrays can be sparse. The first
element of an array might be a double, its fourth element a coordinate, and its second and third
elements left undefined. There is no inefficiency associated with this. Later, a value might be assigned
to the fifth element of the array, thus extending it, or a value might be assigned to the second and
third elements, thus filling in the gaps.

28 class — Class programming

4.2 Default initialization

When an instance of a class is created, the member variables are filled in as follows:

double . (missing value)

string "

classname as specified by class definition

array empty, an array with no elements yet defined

4.3 Specifying initialization

You may specify in classname.class the initial values for member variables. To do this, you
type an equal sign after the identifier, and then you type the initial value. For example,

begin todolist.class —

version 14
class todolist {

double n =0

string name = "nobody"

array list = {"show second syntax", "mark as done"}
actions x = .actions.new arguments

end todolist.class —
The initialization rules are as follows:

double membervarname = . ..
After the equal sign, you may type any number or expression. To initialize the member
variable with a missing value (., .a, .b, ..., .z), you must enclose the missing value in
parentheses. Examples include

double n = 0

double a = (.)
double b = (.b)
double z = (2+3)/sqrt(5)

Alternatively, after the equal sign, you may specify the identifier of a member variable to
be copied or program to be run as long as the member variable is a double or the program
returns a double. If a member program is specified that requires arguments, they must be
specified following the identifier. Examples include

double n = .clearcount
double a .gammavalue 4 5 2
double b .color.cvalue, color(green)

The identifiers are interpreted in terms of the global context, not the class context being
defined. Thus .clearcount, .gammavalue, and .color.cvalue must exist in the global
context.

string membervarname = . ..
After the equal sign, you type the initial value for the member variable enclosed in quotes,
which may be either simple (" and ") or compound (‘" and "’). Examples include

string name = "nobody"
string s = ‘"quotes "inside" strings"’

string a = ""

class — Class programming 29

You may also specify a string expression, but you must enclose it in parentheses. For
example,

string name = ("no" + "body")

string b (char(11))

Or you may specify the identifier of a member variable to be copied or a member program
to be run, as long as the member variable is a string or the program returns a string.
If a member program is specified that requires arguments, they must be specified following
the identifier. Examples include

string n = .defaultname
string a = .recapitalize "john smith"
string b = .names.defaults, category(null)

The identifiers are interpreted in terms of the global context, not the class context being
defined. Thus .defaultname, .recapitalize, and .names.defaults must exist in the
global context.

array membervarname = {...}
After the equal sign, you type the set of elements in braces ({ and }), with each element
separated from the next by a comma.

If an element is enclosed in quotes (simple or compound), the corresponding array element
is defined to be string with the contents specified.

If an element is a literal number excluding ., .a, ..., and .z, the corresponding array
element is defined to be double and filled in with the number specified.

If an element is enclosed in parentheses, what appears inside the parentheses is evaluated
as an expression. If the expression evaluates to a string, the corresponding array element is
defined to be string and the result is filled in. If the expression evaluates to a number,
the corresponding array element is defined to be double and the result is filled in. Missing
values may be assigned to array elements by being enclosed in parentheses.

An element that begins with a period is interpreted as an object identifier in the global
context. That object may be a member variable or a member program. The corresponding
array element is defined to be of the same type as the specified member variable or of the
same type as the member program returns. If a member program is specified that requires
arguments, the arguments must be specified following the identifier, but the entire syntactical
elements must be enclosed in square brackets ([and]).

If the element is nothing, the corresponding array element is left undefined.
Examples include
array mixed = {1, 2, "three", 4}

array els = {.box.new, , .table.new}
array rad = {[.box.new 2 3], , .table.new}

Note the double commas in the last two initializations. The second element is left undefined.
Some programmers would code

array els {.box.new, /*nothing+*/, .table.new}
array rad = {[.box.new 2 3], /*nothing*/, .table.new}

to emphasize the null initialization.

30 class — Class programming

classname membervarname = . ..
After the equal sign, you specify the identifier of a member variable to be copied or a
member program to be run, as long as the member variable is of type classname or the
member program returns something of type classname. If a member program is specified
that requires arguments, they must be specified following the identifier. In either case, the
identifier will be interpreted in the global context. Examples include

box myboxl = .box.new
box mybox2 = .box.new 2 4 7 8, tilted

All the types can be initialized by copying other member variables or by running other member
programs. These other member variables and member programs must be defined in the global context
and not the class context. In such cases, each initialization value or program is, in fact, copied or
run only once—at the time the class definition is read—and the values are recorded for future use.
This makes initialization fast. This also means, however, that

e If, in a class definition called, say, border.class, you defined a member variable that was
initialized by .box.new, and if .box.new counted how many times it is run, then even if
you were to create 1,000 instances of border, you would discover that .box.new was run
only once. If .box.new changed what it returned over time (perhaps because of a change
in some state of the system being implemented), the initial values would not change when
a new border object was created.

e If, in border.class, you were to define a member variable that is initialized as .sys-
tem.curvals.no_of_widgets, which we will assume is another member variable, then even
if .system.curvals.no_of_widgets were changed, the new instances of border.class
would always have the same value—the value of .system.curvals.no_of_widgets
current at the time border.class was read.

In both of the above examples, the method just described—the prerecorded assignment method of
specifying initial values—would be inadequate. The method just described is suitable for specifying
constant initial values only.

4.4 Specifying initialization 2, .new

Another way to specify how member variabl